1 Optimization models

1.1 Introduction

A mathematical static optimization model consists of an *objective function* and a set of *constraints* expressed in the form of a system of equations or inequalities. Optimization models are used extensively in almost all areas of *decision-making* such as engineering design, and financial portfolio selection.

Optimization Models are made up of three basic ingredients:

- decision variables,
- objective function,
- constraints.

1.2 Examples

Example 1

A factory manufactures two products: P_1 and P_2 , using three kinds of resources: R_1 , R_2 and R_3 . Product P_1 requires 12 units of R_1 and 8 units of R_2 . Product P_2 consumes 6 units of R_1 , 12 units of R_2 and 10 units of R_3 . There is 630 units of R_1 available, 620 of R_2 and 350 of R_3 . A factory earns 20\$ selling P_1 and 60\$ selling P_2 . The goal is to maximize total profit by making decision about the amount of P_1 and P_2 to be produced.

Example 2 (Knapsack problem)

The task is to load up a container of capacity $V[m^3]$ and P[kg] with objects of N kinds. Each kind of object is characterized by some volume $v_n[m^3]$, weight $p_n[kg]$ and value $c_n[\$]$ (n = 1, 2, ..., N). How to maximize the total value of load?

Example 3 (Assignment problem)

We have a group of N "applicants" applying for N "jobs,". The cost of assigning the *i*-th applicant to *j*-th job is c_{ij} . The objective is to make one-to-one assignment that minimizes total cost.

Example 4

A shipper having M warehouses with supply α_m of goods at his m-th warehouse must ship goods to N geographically dispersed retail centers, each with a given customer demand β_n , which must be met. The unit cost of transportation between the m-th warehouse and the n-th retail center is c_{mn} . The objective is to determine the minimum possible transportation costs.

Example 5 (*The shortest path problem*)

The problem is to determine the best way to traverse a network to get from an origin to a given destination as cheaply as possible. Suppose that in a given network there are M nodes and N arcs (i.e. edges) and a cost c_{ij} associated with each arc (i to j) in the network. Formally, the Shortest Path (SP) problem is to find the shortest (least cost) path from the start node 1 to the finish node M. The cost of the path is the sum of the costs on the arcs in the path.

Figure 1: Example of a network