Computer Science

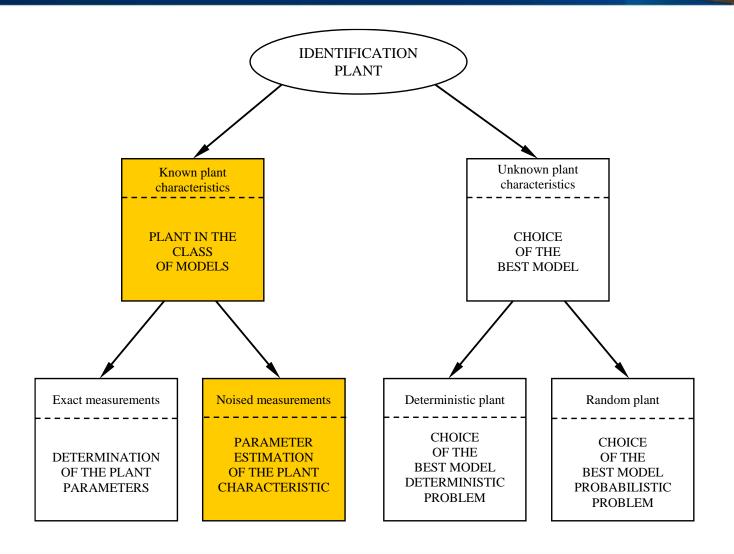
Jerzy Świątek

Systems Modelling and Analysis

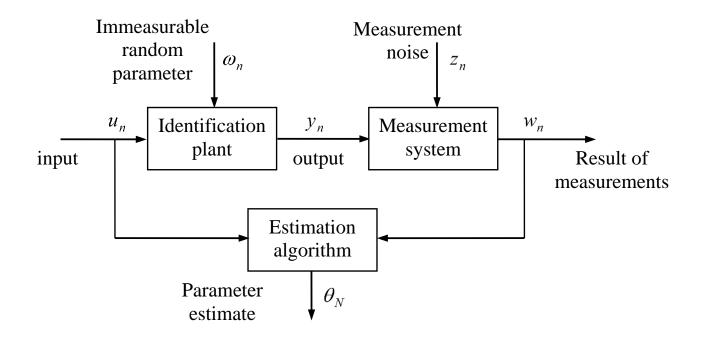
Choose yourself and new technologies

L.9. Estimation of the plant parameter with random value

Master programmes in English at Wrocław University of Technology

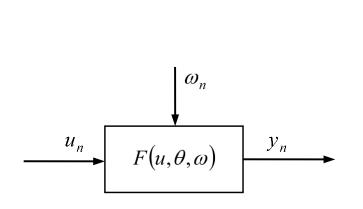


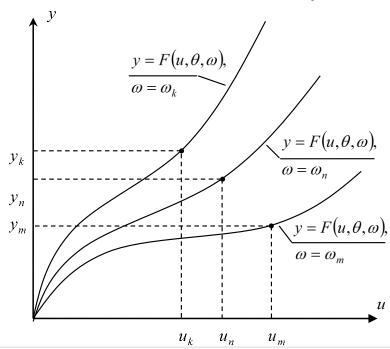
Plant parameter estimation problem



Immeasurable random plant parameter

Measurements of plant characteristic with random parameter





Immeasurable random plant parameter

Problem formulation

Plant characteristic: $y = F(u, \theta, \omega)$

Random plant parameter: $\omega \in \Omega \subseteq \mathbb{R}^{L}$, $(\dim y = \dim \omega = L)$

F – one-to-one mapping $\omega = F_{\omega}^{-1}(u, \theta, y)$

 ω_{n} – value of random variable $\underline{\omega}$ from $\Omega \subseteq \mathbb{R}^{L}$

Probability density function $f_{\omega}(\omega)$ is given

Measurements: $U_N = \begin{bmatrix} u_1 & u_2 & \cdots & u_N \end{bmatrix}, Y_N = \begin{bmatrix} y_1 & y_2 & \cdots & y_N \end{bmatrix}$

Estimation algorithm: $\theta_N = \Psi_N(U_N, Y_N)$

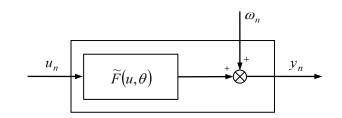
 $F(u,\theta,\omega)$

 $\Psi_N(U_N,Y_N)$

Least square method

Assumptions:

$$y=Fig(u, heta,\omegaig)=\widetilde{F}ig(u, hetaig)+\omega$$
 — plant characteristic
$$\underbrace{Eig[\underline{\omega}ig]}_{\underline{\omega}}=0 \qquad \underbrace{Varig[\underline{\omega}ig]}_{\underline{\omega}}<\infty$$



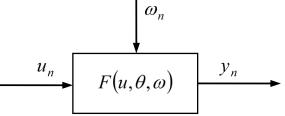
Calculations:

Least square method minimizes empirical variance:

$$Var_{\omega N}(U_N, Y_N, \theta) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \widetilde{F}(u_n, \theta))^2$$

Estimation algorithm has the form:

$$\theta_{N} = \Psi_{N}(U_{N}, Y_{N}) \rightarrow Var_{\omega N}(U_{N}, Y_{N}, \theta_{N}) = \min_{\theta \in \Theta} Var_{\omega N}(U_{N}, Y_{N}, \theta)$$



Assumptions:

 ω_n is value of random variable $\underline{\omega}$, with probability density function $f_{\omega}(\omega)$

For a given input u_n , output y_n , n = 1, 2, ..., N is measured

Sequence y_n , n = 1, 2, ..., N contains values of random variable \underline{y} : $\underline{y} = F(u, \theta, \underline{\omega})$

Calculations:

Probability density function
$$f_y(y,\theta;u) = f_\omega(F_\omega^{-1}(u,\theta,y)) \cdot |J_F|$$

where
$$J_F$$
 is Jacobi matrix: $J_F = \frac{\partial F_\omega^{-1}(u,\theta,y)}{\partial y}$

$$\text{Likelihood function:} \qquad L_{N}\!\left(Y_{N},\theta;\boldsymbol{U}_{N}\right) = \prod_{n=1}^{N} \boldsymbol{f}_{\boldsymbol{y}}\!\left(\boldsymbol{y}_{n},\theta;\boldsymbol{u}_{n}\right) = \prod_{n=1}^{N} \boldsymbol{f}_{\boldsymbol{\omega}}\!\left(\boldsymbol{F}_{\boldsymbol{\omega}}^{-1}\!\left(\boldsymbol{u}_{n},\theta,\boldsymbol{y}_{n}\right)\right) \! \left|\boldsymbol{J}_{F}\right|$$

Estimation algorithm:
$$\theta_N = \Psi_N (U_N, Y_N) \rightarrow L_N (Y_N, \theta_N; U_N) = \max_{\theta \in \Theta} L_N (Y_N, \theta; U_N)$$

Bayesian method

Assumptions:

Additionally heta is value of random variable heta, with probability density function $f_{ heta}(heta)$

Calculations:

$$\begin{split} r \Big(\overline{\theta} \,, Y_N; U_N \Big) &= \underbrace{E}_{\underline{\theta}} \Big[L \Big(\underline{\theta}, \overline{\theta} \, \Big) \big| Y_N; U_N \Big] = \int_{\Theta} L \Big(\theta, \overline{\theta} = \overline{\Psi} \big(U_N, Y_N \big) \Big) f' \Big(\theta \big| Y_N; U_N \big) d\theta \\ f_y \Big(y \big| \theta; u \Big) &= f_{\omega} \Big(F_{\omega}^{-1} \big(u, \theta, y \big) \Big) \big| J_F \big| d\theta \end{split}$$

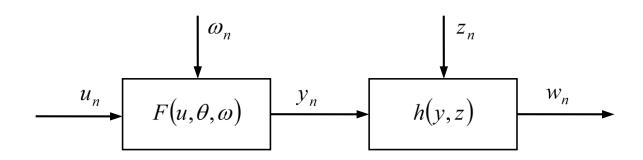
A'posteriori probability density function:

$$f'(\theta|Y_N;U_N) = \frac{f_{\theta}(\theta) \cdot \prod_{n=1}^{N} f_{\omega}(F_{\omega}^{-1}(u_n,\theta,y_n))|J_F|}{\int_{\Theta} f_{\theta}(\theta) \cdot \prod_{n=1}^{N} f_{\omega}(F_{\omega}^{-1}(u_n,\theta,y_n))|J_F|d\theta}$$

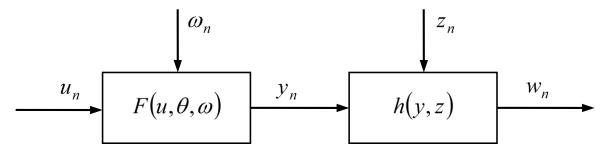
Estimation algorithm: $\theta_N = \Psi_N(U_N, Y_N) \rightarrow r(\theta_N, Y_N; U_N) = \min_{\overline{\theta} \in \Theta} r(\overline{\theta}, Y_N; U_N)$

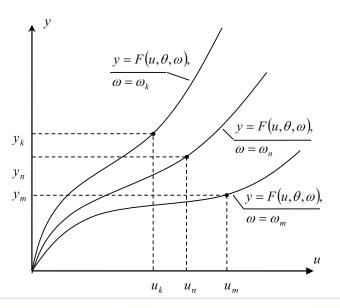
Random plant parameter and measurement noise

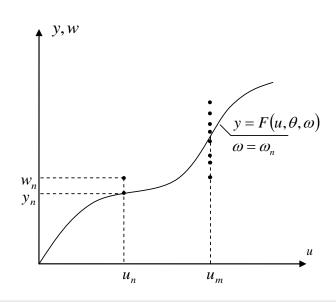
 Noised measurement plant output with randomly changed parameters



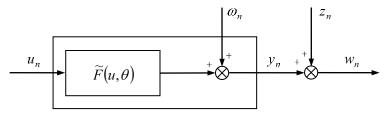
 Noised measurement plant output with randomly changed parameters







Least square method



Assumptions:

$$\underline{z}$$
, $\underline{\omega}$ - random variables such that $E[\underline{\omega}] = 0$, $Var[\underline{\omega}] < \infty$, $E[\underline{z}] = 0$, $Var[\underline{z}] < \infty$

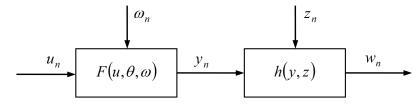
Measurements are values of random variable: $\underline{w} = \widetilde{F}(u, \theta) + \underline{\omega} + \underline{z}$

Calculations:

$$E\left[\underline{\omega} + \underline{z}\right] = 0, \quad Var\left[\underline{\omega} + \underline{z}\right] < \infty$$

Empirical variance:
$$Var_{(\omega+z)N}(U_N, W_N, \theta) = \frac{1}{N} \sum_{n=1}^{N} (w_n - \widetilde{F}(u_n, \theta))^2$$

 $\text{Estimation algorithm:} \quad \theta_{\scriptscriptstyle N} = \Psi_{\scriptscriptstyle N} \big(U_{\scriptscriptstyle N}, Y_{\scriptscriptstyle N} \big) \quad \to \quad Var_{(\omega+z)^{\scriptscriptstyle N}} \big(U_{\scriptscriptstyle N}, W_{\scriptscriptstyle N}, \theta_{\scriptscriptstyle N} \big) = \min_{\theta \in \Theta} Var_{(\omega+z)^{\scriptscriptstyle N}} \big(U_{\scriptscriptstyle N}, W_{\scriptscriptstyle N}, \theta \big)$



Assumptions:

 ω_n is value of random variable $\underline{\omega}$, with probability density function $f_{\omega}(\omega)$

 z_n is value of random variable z, with probability density function $f_z(z)$

 $w_n, n = 1, 2, ..., N$ are values of random variable $\underline{w} = h(\underline{y}, \underline{z})$

For a given u_n , y_n , n = 1, 2, ..., N are values of random variable $\underline{y} = F(u, \theta, \underline{\omega})$

Calculations:

Function h is no one to one mapping with respect $(\underline{y},\underline{z})$, so we add identity $\underline{y}=\underline{y}$ and we have:

$$\underline{w} = h(\underline{y}, \underline{z})$$

$$\underline{y} = \underline{y}$$

The inverse transformation: $\underline{z} = h_z^{-1}(\underline{y}, \underline{w})$

$$\underline{y} = \underline{y}$$

Jacobi matrix:
$$J = \begin{bmatrix} \frac{\partial h_z^{-1}(y,w)}{\partial w} & \frac{\partial h_z^{-1}(y,w)}{\partial y} \\ \frac{\partial y}{\partial w} & \frac{\partial y}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial h_z^{-1}(y,w)}{\partial w} & \frac{\partial h_z^{-1}(y,w)}{\partial y} \\ O_{L\times L} & I_{L\times L} \end{bmatrix}$$

where: $O_{L \times L}$ is L – dimensional zero matrix, $I_{L \times L}$ is L – dimensional unit matrix

Determinant of Jacobi matrix:

$$|J| = \begin{bmatrix} \frac{\partial h_z^{-1}(y, w)}{\partial w} & \frac{\partial h_z^{-1}(y, w)}{\partial y} \\ O_{I \times L} & I_{I \times L} \end{bmatrix} = \frac{\partial h_z^{-1}(y, w)}{\partial w} = |J_h|$$

Joint probability density function of random variables $(\underline{w},\underline{y})$:

$$f_{w}(w, y, \theta; u) = f_{z}(h_{z}^{-1}(y, w))f_{y}(y, \theta; u)|J| = f_{z}(h_{z}^{-1}(y, w))f_{\omega}(F_{\omega}^{-1}(u, \theta, y))|J_{F}||J_{h}||$$

Marginal probability density function of random wariable \underline{w} :

$$f_{w}(w,\theta;u) = \int_{Y} f_{z}(h_{z}^{-1}(y,w))f_{y}(y,\theta;u)|J|dy = \int_{Y} f_{z}(h_{z}^{-1}(y,w))f_{\omega}(F_{\omega}^{-1}(u,\theta,y))|J_{F}|J_{h}|dy$$

Likelihood function:

$$L_{N}(W_{N}, \theta; U_{N}) = \prod_{n=1}^{N} f_{w}(w_{n}, \theta; u_{n}) = \underbrace{ \begin{bmatrix} u_{n} \\ F(u, \theta, \omega) \end{bmatrix}}_{F(u, \theta, \omega)} \underbrace{ \begin{bmatrix} y_{n} \\ h(y, z) \end{bmatrix}}_{h(y, z)}$$

$$= \prod_{n=1}^{N} \int_{Y} f_{z}(h_{z}^{-1}(y, w_{n})) f_{\omega}(F_{\omega}^{-1}(u_{n}, \theta, y)) |J_{F}| |J_{h}| dy$$

Estimation algorithm: $\theta_N = \Psi_N(U_N, Y_N) \rightarrow L_N(W_N, \theta_N; U_N) = \max_{\theta \in \Theta} L_N(W_N, \theta; U_N)$

Bayesian method

Assumptions:

Additionally heta is value of random variable $\underline{ heta}$, with probability density function $f_{ heta}(heta)$

For a given parametr θ and input u_n the sequence $y_n, n=1,2,\ldots,N$ are values of random variable y under condition $\underline{\theta}=\theta$ and input is equal u.

 $w_n, n=1, 2, ..., N$ are values of random variable \underline{w} under condition $\underline{\theta} = \theta$

 z_n is value of random variable \underline{z} , with probability density function $f_z(z)$

Calculations:

$$\underline{w} = h(\underline{y}, \underline{z})$$

$$f_{w}(w|\theta;u) = \int_{Y} f_{z}(h_{z}^{-1}(y,w))f_{y}(y|\theta;u)|J|dy = \int_{Y} f_{z}(h_{z}^{-1}(y,w))f_{\omega}(F_{\omega}^{-1}(u,\theta,y))|J_{F}|J_{h}|dy$$

Bayesian method

A'posteriori probability density function:

$$f'(\theta|W_N;U_N) = \frac{f_{\theta}(\theta) \prod_{n=1}^{N} \int_{Y} f_z(h_z^{-1}(y,w_n)) f_{\omega}(F_{\omega}^{-1}(u_n,\theta,y)) |J_F| |J_h| dy}{\int_{\Theta} f_{\theta}(\theta) \prod_{n=1}^{N} \int_{Y} f_z(h_z^{-1}(y,w_n)) f_{\omega}(F_{\omega}^{-1}(u_n,\theta,y)) |J_F| |J_h| dy d\theta}$$

Conditional risk:

$$r(\overline{\theta}, Y_N; U_N) \stackrel{\text{df}}{=} \underbrace{E}_{\underline{\theta}} \left[L(\underline{\theta}, \overline{\theta}) W_N; U_N \right] = \int_{\Theta} L(\theta, \overline{\theta}) = \overline{\Psi}(U_N, W_N) f'(\theta | W_N; U_N) d\theta$$

Estimation algorithm: $\theta_N = \Psi_N (U_N, W_N) \rightarrow r(\theta_N, W_N; U_N) = \min_{\bar{\theta} \in \Theta} r(\bar{\theta}, W_N; U_N)$

Thank you for attention

